

 W3: Regex Rules! Using Regular
Expressions with MarcEdit

July 13, 2019

PRESENTED BY

Yael Mandelstam

Fordham Law Library

ymandelstam@law.fordham.edu

Jean M. Pajerek

Cornell Law Library
jmp8@cornell.edu

Alan Keely

Wake Forest University

Professional Center Library

keelyda@wfu.edu

file://///fldata.lawfac.lawnet.fordham.edu/users$/ymandelstam/Desktop/regex%20workshop/ymandelstam@law.fordham.edu%20
mailto:jmp8@cornell.edu

Regex Rules! Page 1

Program Outline

Regular Expressions: Introduction and Basic Concepts

 General Information

o What is Regex and Why Should We Use It?

o Regex Resources

o Online Regex Testing Tools

 Basic Concepts

o Anchors & Escapes

o Character Classes

o Quantifiers & Alternations

o Grouping (in Find)

o Substitution (In Replace)

Brief introduction to MarcEdit

 General Information

 MarcEdit Main Window

 MarcEdit File Formats

 Opening a File of MARC Records

 Regex in the MarcEditor

Putting It All Together: Using Regular Expressions in MarcEdit

 Best Practices

 Scenario 1: Changing Order of Subfields
 Scenario 2: Adding Missing Subfield Delimiters/Codes

 Scenario 3: Deleting Fields Based on Specific Criteria

 Scenario 4: Adding Missing Punctuations

 Scenario 5: Extracting a Subset of Records Based on Call Number Ranges

In the Basic Concepts section we’ll be using
RegExr, a regex online testing tool available at
https://regexr.com/

In addition to the default global flag, select the
multiline flag. In most cases the global mode,
which ensures that the regex tool does not stop
after the first match, would suffice. But when
using special characters that designate
beginning/end of line, the regex tool needs to be
in multiline mode.

Note that MarcEdit recognizes beginning/end of
line characters by default.

https://regexr.com/

Regex Rules! Page 2

Regular Expressions (regex):

Introduction and Basic Concepts

GENERAL INFORMATION

Regex Resources
 Getting started with regex (Terry Reese)

o Power Point: https://www.slideshare.net/reese_terry/getting-started-with-regular-expressions-
in-marcedit

o YouTube video: https://www.youtube.com/watch?v=7YXvS4xBEfw&feature=youtu.be

 RegexOne (interactive regex tutorial): https:regexone.com

 Microsoft.net regex site (quick reference and other tools): https://docs.microsoft.com/en-
us/dotnet/standard/base-types/regular-expression-language-quick-reference

Online Regex Testing Tools
 RegExr: https://regexr.com/

 Regex101: https://regex101.com/

 RegEx Pal: https://www.regexpal.com/

What is Regex and Why Should We Use It?

Normally, when we search for a text string, we look for exact matches. For example, when

we search for “cat”, we want the first character to be a “c”, the second character to be an

“a”, and the third character to be a “t”. But what if we just want the first character to be a

capital letter, any capital? We can do 26 separate searches (Aat, Bat, etc.) or we can use a

search term to capture a number of different characters.

With regex we are able to look for a search PATTERN when a regular search cannot

accomplish what we are trying to do.

Characters in regex can be treated either as regular characters such as a, b, C, D, 1, 2 and

are thus called “literals”, or have special function. Characters with special function in regex

are called METACHARACTERS or SPECIAL CHARACTERS.

https://www.slideshare.net/reese_terry/getting-started-with-regular-expressions-in-marcedit
https://www.slideshare.net/reese_terry/getting-started-with-regular-expressions-in-marcedit
https://www.youtube.com/watch?v=7YXvS4xBEfw&feature=youtu.be
https://regexone.com/
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://regexr.com/
https://regex101.com/
https://www.regexpal.com/

Regex Rules! Page 3

BASIC CONCEPTS

Anchors & Escapes

^ (caret) Matches beginning-of-line position
$ (dollar sign) Matches end-of-line position
\ (backslash) 1. Has a special function when coupled with a specific letter (e.g., \n matches new

line)

2. Specifies that a metacharacter should be treated as a literal. In regex this is called

“escaping” a metacharacter

^ (caret) $ (dollar sign)

Example #1

^app matches only
the “app” in apple
and application

IMPORTANT: In
some contexts, the
caret has a different
function. See
section on
Character Classes.

Example #2

le$ matches the two
last letters in apple and
grapple

Useful Tips

The dollar sign ($) is useful for finding and adding character(s) or strings at end of fields
and subfields, e.g., missing punctuation or additional subfields or text.

The dollar sign combined with the caret (^) is useful for establishing the boundaries of
the string, e.g., ^abc$ matches the entire “abc” string and nothing else.

Regex Rules! Page 4

\ (backslash)
When coupled with a specific letter the backslash has a special function (e.g., \d matches any digit), but
when preceding a metacharacter, it does the opposite and “escapes” the metacharacter so it can be treated
as a literal (e.g., since the question mark is a metacharacter, we need to escape it with a backslash – \? – if
we want to use it as a literal)

Metacharacters such as ^ $ \ | . * + ? { } [] () need to be
ESCAPED with a backslash (\) to match literal characters

Exercise 1

apple
popsicles
grapple
lesson
application

Write an expression that matches
only the words that end with ple

Exercise 2

How would you express $z in the following field?
How would you express $u?

856 40$zOnline Resource$uhttp://www.heinonline.org

Regex Rules! Page 5

Character Classes
[abc] Matches any one of the enclosed characters. Case sensitive, but order does not matter
[^abc] Matches any character NOT enclosed in the square brackets. In this example every character

is matched EXCEPT for “a”, “b”, or “c”. Also case sensitive, but again, order does not matter
[-] A range of characters, e.g., [a-z], [A-Z], [0-9]
. (period) Matches any single character except line break
\w Matches any alphanumeric character as well as underscore; same as [a-zA-Z0-9_]
\W Matches any character that is not alphanumeric or underscore; same as [^a-zA-Z0-9_]
\s Matches whitespace characters such as space, tab, and new line
\S Matches non-whitespace characters
\d Matches any digit; same as [0-9]
\D Matches any non-digit; same as [^0-9]

Example #3

This expression looks for
matches on the literal
letters “gr” followed by
EITHER “a” or “e”

Example #4

Looks for matches on the
literal letters “gr” followed
by any letter that is NOT “a”
or “e”. The caret (^) negates
both the “a” and the “e” in
the expression.

Only ^ - \ [] need to be escaped inside a

character class to match literal characters

Regex Rules! Page 6

Example #5

Looks for matches on
the literal letters “gr”
followed by ONE of the
vowels. Notice that the
second “e” in “greet”
and the second “o” in
“groovy” are NOT
matched.

Example #6

In this example, instead
of listing all the possible
vowels, we’re using a
range of letters between
“a” and “u.” The result is
similar to #5, though
unlike the previous
example, it would also
match any other
character between “a”
and “u” following “gr”
(e.g., grp)

Example #7

What happens when
we add the literal
letter “y” to the end
of this expression?
“grey” and “gray”
are matched, but
“gravy” and
“groovy” are not,
even though they
have the letter “y” at
the end.

QUESTION: Why is
this?

Example #8

A period (.) matches
any single character
except line feed (\n).
What happens when
we put one in front
of the “y?” The
period is a
placeholder for the
single character “v”
in “gravy,” so a
match is identified.

Regex Rules! Page 7

Example #9

Adding a second period
allows a match on
“groovy” because one
period takes the place
of the second letter “o”
and the other period
fills in for the letter ”v”

QUESTION: What will
happen if we add a
third period (in front
of the “y”) to the
expression?

Example #10

\w represents any alpha-
numeric character, as
well as the underscore
character. This
expression matches the
literal letters “gr”
followed by any alpha-
numeric character (\w),
followed by any single
character (.)

Example #11

\w is not case-sensitive.
These matches would still be
found if the letter “r” were
capitalized in the text we’re

matching against.

Example #12

\W matches any
non-alphanumeric
character

The same result can
be achieved using
[^a-zA-Z0-9_]

Example #13

\d matches any digit. In
this example, all the
digits are matched, while
the hyphens are not.

The same result can be
achieved using [0-9]

Example #14

\D matches characters that
are NOT digits

QUESTION: What is
another way to obtain the
same result?

Regex Rules! Page 8

Example #15

\s matches a
whitespace character

Example #16

\S matches non-
whitespace characters

Exercise 3

Consider this sample text and regular
expression. Can you think of a way to alter the
expression to match the word “gravity” and
nothing else?

Exercise 4

TMX-482
GAL-931
LTU-387
JOYRIDE
HTP 638
IMGR8T
GODOGGO
WTX-495

4.1 Here is a short list of license plate numbers. Write an
expression that matches the properly formatted ones, i.e., 3
letters, hyphen, 3 digits.

TMX-482
GAL-931
LTU-387
JOYRIDE
HTP 638
IMGR8T
GODOGGO
WTX-495

4.2 Write an expression that matches the license plate number
missing its hyphen.

Regex Rules! Page 9

Quantifiers & Alternations

* (asterisk) Matches preceding expression zero or more times
+ (plus) Matches preceding expression one or more times
? (question mark) Matches preceding expression zero or one time
{n} Matches preceding expression exactly n times
{n,} Matches preceding expression n or more times
{n,m} Matches preceding expression between n and m times
| (pipe) Alternation/OR

* (asterisk) + (plus) ? (question mark)

Example #17

The first .* matches
any character before
“leg” zero or more
times

The second .*
matches any
character after “leg”
zero or more times

Example #18

The first .+ matches any
character before “leg”
one or more times

The second .+ matches
any character after “leg”
one or more times

Question: Why does this
expression not match
“legal” and “leg”?

Regex Rules! Page 10

Example #19

^ matches the beginning
of line

.+ matches any
characters after “leg”
one or more times

Example #20

^ matches the beginning
of line

.? matches any character
before and after “trial”
zero or one times

Question: Why does this
expression not match
“mistrial” and
“industrial”?

{n} {n,} {n,m}

Example #21

\d matches any digit

{13} matches the preceding
expression exactly thirteen
times (this expression will
match any 13-digit ISBN, as
long as there are no spaces or
hyphens between the digits)

This expression can also be
written as [0-9]{13}

Example #22

{n,} matches preceding expression n or
more times

.m{1,} matches am, umm, and hmmm
.m{2,} matches umm and hmmm but
NOT am
.m{3,} matches hmmm but
NOT am and umm
.m{4,} matches none of the three words

Exercise 5

law
laws
bylaw
lawyer

5.1 Write an expression that matches all four words
5.2 Write an expression that matches ONLY laws and lawyer
5.3 Which word(s) does the expression .?law.+ NOT match?

Regex Rules! Page 11

Example #23

{2,3} matches the preceding expression between two
and three times, so when following the number “5”, it
matches 55 and 555

In addition to the above, this expression also requires
the string to have first digit “4” and last digit “6”

Question: Why does this expression not match “456”
and “455556”?

Exercise 6

67805
678805
6788805
67888805

Which of these numbers are NOT matched by
the expression 678{1,3}05?

Exercise 7

pizza
piazza
puzzle
pizzeria

7.1 Write an expression that matches puzzle and pizzeria only
7.2 Which word(s) does the expression .*zz.{1,2} NOT match?

Regex Rules! Page 12

| (pipe)

Example #24

Matches entries that
end with “le” OR “lo”

Example #25

Matches entries
beginning with “app”
OR “ban”

Exercise 8

=035 \\$a(OCoLC)ocm99988765
=035 \\$a(OCoLC)ocn499887655
=035 \\$aocm99988765
=035 \\$aocn499887655

Write an expression that matches
OCLC numbers that begin with ocm
OR ocn and do not have the (OCoLC)
prefix

Exercise 9

Find at least three ways to express the 246 field up to the first
subfield:

=246[space][space][indicator][indicator]$

It is best practice to ALWAYS put alternations (OR) in parentheses to ensure the matching only

of that part of the expression you want matched by the alternation. For example, think of the

difference in search results for “white tables OR chairs” vs. “white (tables OR chairs)”

Regex Rules! Page 13

Grouping & Substitution

Grouping (in Find): In addition to using parentheses to restrict the application of certain functions to a specific
part of the expression, they are also used for grouping substrings that can later be referenced in Replace (first
group will be referenced as $1, second group as $2, etc.). These grouped substrings are often referred to as
“subexpressions” or “capturing groups”.

Substitution (in Replace): Once a search pattern is specified in Find, a second expression is used in Replace to
indicate what substitutions to make within the matched text. This is done by referencing the results of the search
pattern and making the desired changes to that pattern.

Example #26

Group 1: ([md]onkeys): “m” or “d” followed by “onkeys” matches both “monkeys” and “donkeys”.
This group is referenced in Replace as $1

Group 2: (bananas|carrots): matches bananas OR carrots
This group is referenced in Replace as $2

Since we want to replace the word “love” with “eat”, we ignore the former and add the latter to the Replace
string, with spaces on each side: $1 eat $2

Useful REPLACE Tips

To add a literal MARC subfield in Replace, use $$ (two dollar signs)

To add a literal number in Replace, put the number after the dollar sign in curly brackets. For example, to add “1” after
the first referenced group ($1), express it as ${1}1$3. Without the curly brackets ($11$3), the system will think you
want group eleven followed by group three.

Regex Rules! Page 14

\n (new line)

The \n matches a new line, also known as line feed or line break. It is useful in MarcEdit when we want to
insert a new field or split an existing field.

Important: When writing an expression in MarcEdit that involves multiple lines, you need to check not only
“Use Regular Expressions” but also “Use Multiline Evaluation”.

Example #27

Regex Rules! Page 15

Brief introduction to MarcEdit

GENERAL INFORMATION

 What is MarcEdit?

MarcEdit is a free universal library metadata tool, developed and owned by Terry Reese

 System requirements for MarcEdit 7.x

Windows 7+ (XP no longer supported)

Windows .NET Framework 4.6+

 Installing MarcEdit

Downloads available at http://marcedit.reeset.net/downloads

To find out if you need the 32-bit or 64-bit download, click the Start button on your computer

and click System (if it’s not listed, it should appear when you type ‘system’ in the search box). In

the box that opens with information about the system, you should find your system type.

 Help/Support

MarcEdit Listserv (subscribe and search list archives): https://listserv.gmu.edu/cgi-bin/wa?A0=marcedit-l

Post to MarcEdit Listserv: MARCEDIT-L@listserv.gmu.edu

MarcEdit Tutorials on YouTube: https://www.youtube.com/user/tpreese/playlists

Terry Reese reeset@gmail.com

MARCEDIT MAIN WINDOW

http://marcedit.reeset.net/downloads
https://listserv.gmu.edu/cgi-bin/wa?A0=marcedit-l
mailto:%20MARCEDIT-L@listserv.gmu.edu
https://www.youtube.com/user/tpreese/playlists
mailto:reeset@gmail.com

Regex Rules! Page 16

OPENING A FILE OF MARC RECORDS

There are various ways to open a file of .mrc records:

1. Directly from file: Double-click on filename > Execute > Edit Records

2. Via MARC Tools

MarcEdit Main Window > MARC Tools icon > Select Operation: MarcBreaker

Select Data to Process: Open…: select your binary (.mrc) file

Save As…: select location and name mnemonic (.mrk) file

Click Execute > Edit Records

3. Via MarcEditor

MarcEdit Main Window > MarcEditor icon

Select File > Open

At the bottom of the dialog box select MARC Files (*.mrc) Locate your file and click Open

REGEX IN THE MARCEDITOR

• File > Select Records for Edit

• Edit > Find & Replace

• Tools > Add/Delete Field

• Tools > Copy Field Data

• Tools > Edit Fields

• Tools > Edit Subfield Data

• Tools > Swap Fields

• Tools > Regular Expression Store

• Tools > Build New Field

• Report > Custom Reports

About MarcEdit File Formats

MarcEdit saves MARC21 files in the following formats:

*.mrc for records in raw MARC21 format (binary)

*.mrk for records in human-friendly mnemonic format

To convert records from .mrc to .mrk use MarcBreaker

To convert records from .mrk to .mrc use MarcMaker

MarcEdit can also read other file types such as Innovative Interfaces .out files, OCLC

.dat files, vendor .001, .marc, and .bin files. To use these files in MarcEdit, change the

file extension to .mrc via right-click > Rename or F2

Regex Rules! Page 17

Putting It All Together:

Using Regular Expressions in MarcEdit

BEST PRACTICES

 Always, ALWAYS, ALWAYS keep an unedited copy of your original file

 When testing a new expression, keep track of your various iterations of the expression in a separate text

file so you don’t end up moving around in circles and repeating the same failed expressions

 Always check each revision by viewing the targeted field BEFORE and AFTER via the Find function:

o Edit > Find (Ctrl+F)

o Enter field (e.g. =050)

o Click Find All

 Know how to use UNDO:

o Option 1: Use the Windows-wide Ctrl+Z to undo your last edit; use Ctrl+Y to reverse your last

Undo

o Option 2: Select Edit > Undo (F2)

o To undo your previous GLOBAL edit select Edit > Special Undo (Ctrl+Alt+F2)

 When stuck, take advantage of the regex experts on the MarcEdit Listserv. They will not only help you

construct your expression, but will often add a detailed explanation that can be very educational.

“It is easy to write regular expressions to match what you want and
expect. It is much harder to write regular expressions that anticipate all
possible scenarios so that they do not match what you do not want to
match.”

 Ben Forta

Regex Rules! Page 18

SCENARIO 1: CHANGING ORDER OF SUBFIELDS

Description: Some of the 856 fields in a file have $u followed $z, while others have $z followed by $u. We
want all fields to follow the same pattern of $z followed by $u.

Solution: In the MarcEditor select Edit > Replace (Ctrl+R). Check Use regular expressions

Find: (=856 ..)(\$u.*)(\$z.*)

Replace: $1$3$2
(groups 2 & 3 are switched)

Group 1: (=856 ..)

Group 2: (\$u.*)

Group 3: (\$z.*)

(field 856[space x2][any character x2])

([dollar sign escaped][u][everything else])

([dollar sign escaped][z}[everything else])

$1 in Replace

$2 in Replace

$3 in Replace

Exercise 10

Some 040 fields have $e (Description Convention) appear before

$b (Language of Cataloging). For example:

=040 \\$aABC$erda$beng$cABC

Write an expression to move $b before $e

Regex Rules! Page 19

SCENARIO 2: ADDING MISSING SUBFIELD DELIMITERS/CODES

Description: We have a file of MARC records with several different formats of 041 field. Some have two or

three sets of three-letter language codes strung together in one $a, some have $b with two language codes

strung together, and a few have $h appended at the end with no data. We want to delete $h and insert

missing delimiters $a and $b between language codes.

Solution: In the MarcEditor select Tools > Edit Subfield Data. Check Use regular expressions

Step 1: Remove $h

Field: 041
Subfield: h
Click Remove Text

Note that this step does not require regex

Step 2: Add $a between the first and second
language codes in subfield "a"

Field: 041
Subfield: a
Field Data: ([a-z]{4})([a-z]{3})
Replace with: $1$$a$2
Check Regular Expression

Group 1: any four lowercase letters (the “a” in $a
+ the first three-letter language code); referenced
in Replace as $1
Group 2: any three letters (the second three-letter
language code); referenced in Replace as $2

$$a in Replace inserts the missing $a between the
two language codes. Click Replace Text

Step 3: Add $a between the second and third language
codes in subfield "a"

Same as step 2, so just click Replace Text again.

Note: If there are more than 3 language codes in $a, this
step can be repeated multiple times until we get the
message “0 modifications were made”

Exercise 11

Using Tools > Edit Subfield Data Add $b

between the first and second language codes in
subfield "b"

Regex Rules! Page 20

SCENARIO 3: DELETING FIELDS BASED ON SPECIFIC CRITERIA

Description: We received a file of MARC records that has a mixture of LC and non-LC subject headings. We
wish to keep the former (LC 6xx with second indicator “0”) and delete the latter, but want to make sure the
655 fields that do not have second indicator “0” are not deleted.

Solution: In the MarcEditor select Tools > Add/Delete Field (F7). Check Use regular expressions

=6 Beginning of 6xx field
. (period) Any single character
[^5] Any character other than “5”
.{3} Any three characters
[^0] Any character other than “0”

Putting it together: =6.[^5].{3}[^0]

Click Delete Field

=650 \4$aOrganisation internationale.
=651 \0$aSalem (Mass.)
=655 \7$aStatutes and Codes.$2lcgft

Only the first field fulfils all required
criteria and will be deleted. The other
two fields will remain untouched.

Exercise 12

We have a file of MARC records that includes multiple 856 fields with URLs for

various domains, including llmc, heinonline, google, hathitrust, ebsco, and

others. We want to keep only 856 with llmc OR heinonline and delete all other

URLs.

In the MarcEditor select Tools > Add/Delete Field

Hint: Check the Delete Field Options section

Regex Rules! Page 21

SCENARIO 4: ADDING MISSING PUNCTUATIONS

Description: We received a file of MARC records with some 1xx fields missing the end period. We would like
to add that period but ONLY if the field has no end punctuation such as period, hyphen, question mark, or
closed parenthesis. Note that the expression below can be used for other fields such as 7xx and 6xx.

Solution: In the MarcEditor select Tools > Edit Field Data (Ctrl+Shift+F3). Check Use regular expressions

Find: (.*[^.\-?)])$

Remember that elements within square brackets are
always interpreted as OR, and that only ^ - \ [] need
be escaped within the square brackets.

(Start group (to be referenced in Replace as $1)
 .* Any character(s)
[^ Open square brackets and add caret. The caret
will negate everything within the square bracket:
. period (no need to escape),
\- or hyphen (escaped),
? or question mark (no need to escape),
) or closing parenthesis (no need to escape).
] Close square bracket
) Close group
$ Match end of field

Replace: $1.
$1 Group 1
. (period) Added missing period (note that there is
no “escaping” in Replace)

Click Process

Exercise 13

We want to add a slash before 245$c, but only if it is missing.

We tried this expression, but it’s not working. Can you identify

the error(s)?

Find: (=245.*[^/])(/$c)

Replace: $1 \$2)

Regex Rules! Page 22

SCENARIO 5: EXTRACTING A SUBSET OF RECORDS BASED ON CALL NUMBER RANGES

Description: We would like to extract from a file of MARC records only those records for law reviews with
call numbers between K1-K30.

Solution: In the MarcEditor, follow these steps:

File > Select Records for Edit

❶ In Display Field enter 050$a

❷ Click Import File

❸ Enter your expression

❹ Check Use regular expressions

❺ Click the magnifying icon

❻ Click Export Selected and rename your new file

We are already displaying 050$a, so the
expression can start directly with the call
number range.

^ Beginning of subfield
K Literal letter “K”
(Open parentheses for OR Subexpression
[12]? Zero or one instances of “1” OR “2”
\d Any digit
| OR
30 Literal number “30”
) Close parentheses
$ End of subfield “a”

Putting it together: ^K([12]?\d|30)$

The caret and dollar sign set important
boundaries. Without them we could end up
with numbers that have K in a place other than
the beginning of the subfield, and call numbers
with more than two digits.

Regex Rules! Page 23

THE PROCESS OF DEVELOPING THE ABOVE EXPRESSION

^ = beginning of line

K\d = K with any single digit (K1, K2, K3, etc.)

OR

K[12]\d = K with any two digits starting with “1” or “2” (K10, K11, K12, etc., or K20, K21, K22, etc.)

OR

K30

$ = end of line

Putting it together:

^(K\d)|K[12]\d|K30)$

This expression works, but is longer than it needs to be. To simplify it, let’s take the “K”, which appears in

every part of the expression, and use it only once outside the parentheses:

^K(\d|[12]\d|30)$

To make it even more elegant, we can condense the expression for single and double digits using the

question mark, which specifies that [12] will appear zero or one time. In other words, for single digit K

numbers, the [12] will be ignored and only the \d (any digit) will be captured:

^K([12]?\d|30)$

Exercise 14

Description: We have a big file of records for vendor ebooks, but we want to
load into our system only those titles with K and J call numbers. How can we
extract these records?

Using File > Select Records for Edit, write an expression that will identify all call
numbers starting with “K” or “J” and will ignore all other call numbers.

Try this exercise two ways:

1. In Display Field, enter 050$a
2. In Display field, enter 050

How does each option affect your expression?

Regular Expressions (regex) Commonly Used in MarcEdit

Metacharacters: . ^ $ | \ () * + ? {} [] -- These characters need to be escaped with a backslash (\) to match literal

characters

Anchors & Escapes

^ (caret) Matches beginning-of-line position ^cat matches cat, catalog, but NOT scatter

$ (dollar) Matches end-of-line position ght$ matches night, bright, but NOT lightning

\ (backslash)
Specifies the next character as either a
special character or a literal

\$a matches $a

\n Matches new line
.\n. matches
This is first line;
This is second line

Character Classes

Only ^ - \] need to be escaped inside a character class

[abc] (Same as (a|b|c))
Character set. Matches any one of the
enclosed characters.

s[mc] matches small, scroll

[^abc]
Negative character set. Matches any
character NOT enclosed

c[^au]t matches cot but NOT cat or cut

[-] (hyphen with square
brackets)

A range of characters
[a-zA-Z] matches any lowercase/uppercase
letter
[0-9] matches any digit

. (period) Matches any single character b.g matches big, bag, bug

\w Same as [a-zA-Z0-9] Matches any alphanumeric 1\w3 123 1a3 1B3

\W Same as [^a-zA-Z0-9] Matches any non-alphanumeric 1\W3 1%3, 1+3, 1$3

\s Same as [] Matches whitespace
\.\s{2,3}[a-z] matches
1. xyz
2. xyz

\S Same as [^] Matches non-whitespace
.*\.\S.* matches space missing between period
and beginning of new sentence, e.g., abc.Xyz

\d Same as [0-9] Matches any digit 1\d3 matches 103, 113, 123, 133, etc.

\D Same as [^0-9] Matches any non-digit 1\D3 1a3, 1@3, 1B3

Quantifiers & Alternations

* (asterisk)

Matches preceding expression zero or more
times
(.* matches any character zero or more
times)

il*e matches mile, pier, grille
12*5 matches 15, 125, 12225, etc.

+ (plus)
Matches preceding expression one or more
times

ar+ matches are, arrow, carrier but NOT apple
12+5 matches 123, 1225

? (question mark)
Matches the preceding expression zero or
one time

mo?r matches more, ramrod but NOT mooring
12?5 matches 15, 125

{n} Matches preceding expression exactly n times 12{3}5 matches 12225

{n,}
Matches preceding expression n or more
times

12{3,}5 matches 12225, 122225, 1222225,
12222225, etc.

{n,m}
Matches preceding expression between n and
m times

12{3,5}5 matches 12225, 122225, 1222225

| (pipe) Or cat|dog matches cat, dog

Grouping (in Find) & Substitution (in Replace)

() (parentheses)

$[group #]

Group in Find. When matching a pattern
within parentheses, we later use
$1, $2, etc. in Replace to refer to the
previously matched pattern

Reverse Last Name, First Name

Find: ([A-Z][a-z]+), ([A-Z][a-z]+)
Replace: $2[space]$1

	Blank Page
	Blank Page

