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Abstract. Privacy policies are intended to inform users about the collection and use of their data by websites, mobile apps and
other services or appliances they interact with. This also includes informing users about any choices they might have regarding
such data practices. However, few users read these often long privacy policies; and those who do have difficulty understanding
them, because they are written in convoluted and ambiguous language. A promising approach to help overcome this situation
revolves around semi-automatically annotating policies, using combinations of crowdsourcing, machine learning and natural lan-
guage processing. In this article, we introduce PrivOnto, a semantic framework to represent annotated privacy policies. PrivOnto
relies on an ontology developed to represent issues identified as critical to users and/or legal experts. PrivOnto has been used
to analyze a corpus of over 23,000 annotated data practices, extracted from 115 privacy policies of US-based companies. We
introduce a collection of 57 SPARQL queries to extract information from the PrivOnto knowledge base, with the dual objective
of (1) answering privacy questions of interest to users and (2) supporting researchers and regulators in the analysis of privacy
policies at scale. We present an interactive online tool using PrivOnto to help users explore our corpus of 23,000 annotated data
practices. Finally, we outline future research and open challenges in using semantic technologies for privacy policy analysis.

Keywords: Privacy policies, privacy technologies, ontology-based data access, SPARQL

bother to read them [30,34]. Yet studies continue to
show that people care about their privacy. This results
in a general sense of frustration with many people feel-

1. Introduction

As people interact with an increasing number of

technologies during the course of their daily lives it
has become impossible for them to keep up with the
many different ways in which these technologies col-
lect and use their data. Privacy policies are too long
and difficult to read to be useful and few, if any, ever

*Corresponding author, e-mail: oltramale @ gmail.com

ing that they have no or little control over what hap-
pens to their data. There is a disconnect between ser-
vice providers and their consumers: privacy policies
are legally binding documents, and their stipulations
apply regardless of whether users read them. This dis-
connect between Internet users and the practices that
apply to their data has led to the assessment that the
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“notice and choice” legal regime of online privacy is
ineffective in the status quo [36]. Additionally, pol-
icy regulators—who are tasked with assessing privacy
practices and enforcing standards—are unable to as-
sess privacy policies at scale.

These shortcomings have prompted our team to de-
velop technology to semi-automatically retrieve salient
statements made in privacy policies, model their con-
tents using ontology-based representations, and use
semantic web technologies to explore the obtained
knowledge structures [40]. The research described in
this paper focuses in particular on the modeling and
knowledge modeling and elicitation part. This includes
reasoning about statements that are explicitly made in
policies as well as statements that may be missing, am-
biguous or possibly inconsistent. End users can benefit
from such reasoning functionality, as it can be used to
help them better appreciate the ramifications of a given
policy (e.g., a statement indicating that a site can share
personally identifiable information can be used to infer
that the site’s policy provides no guarantee that it will
not share the user’s email address with third parties).
Reasoning functionality can also be used to raise user
awareness about issues that a policy does not explicitly
address or glosses over (e.g. a site that does not men-
tion whether it collects the user’s location or shares it
with third parties is a site that does not make any guar-
antee about such practices and therefore one that could
engage in such practices). Reasoning can help opera-
tors identify potential compliance violations or incon-
sistencies in their policies, and help them address these
issues. Similar functionality can also help regulators
check for compliance at scale (e.g. compliance with
regulations such as the Children Online Privacy Pro-
tection Act, the California Online Privacy Protection
Act, or the EU General Data Protection Directive). It
can also be used to compare policies within and across
different sectors, look for trends over time and more.
One can also envision interfaces that could enable end-
users to identify alternative websites or mobile apps
(e.g., "I don’t like that this site provides no guarantee
about the sharing of my location: are there other sites
offering the same service that will not be sharing my
location with third parties?").

We introduce PrivOnto, a semantic technology (ST)
framework to model and reason about privacy prac-
tice statements at scale. PrivOnto has been validated
on a corpus of over 23,000 privacy policy annotations
made publicly available by the Usable Privacy Policy

(UPP) project, the project that is also the umbrella un-
der which we developed PrivOnto.!

The rest of this article is structured as follows. First,
we provide overviews of the Usable Privacy Policy
Project in Section 2 and related work in Section 3. In
Section 4, we describe an ontology of privacy policies
populated with about 23,000 annotations of data prac-
tices. In Section 5, we illustrate the analysis of the ob-
tained knowledge base with suitable SPARQL queries,
designed to pinpoint relevant patterns of privacy prac-
tices in the annotated corpus. In Section 6, we provide
examples of the semantic search functionality created
using the above mentioned SPARQL queries. Finally,
in Section 7, we conclude the paper with a discussion
of open challenges and directions for future research.

2. The Usable Privacy Policy Project

The Usable Privacy Policy Project builds on recent
advances in natural language processing (NLP), pri-
vacy preference modeling, crowdsourcing, and privacy
interface design to develop a practical framework that
uses websites’ existing natural language privacy poli-
cies to empower users to more meaningfully control
their privacy. Figure 1 provides an overview of the ap-
proach. We discuss our main research areas below:>

Semi-Automated Data Practice Extraction: We aim
to extract relevant data practices from privacy policy
text in a hybrid approach that combines crowdsourc-
ing and NLP. We leverage crowdsourcing to obtain an-
notations of privacy policies in terms of topics such as
the information collected by a website, whether that
information is shared with third parties with or without
the user’s consent, and whether the collected data can
be deleted by users [48]. In parallel, we have devel-
oped a corpus of privacy policies annotated by skilled
workers with fine-grained detail about the data prac-
tices they contain [47]. We plan to use the data from
this fine-grained corpus to decompose the annotation
task into those subtasks that can be fully automated,
such as identification of paragraph topics [28] and user
options [41], and those which remain most suitable for
crowdworkers.

Privacy Policy Analysis: We use salient informa-
tion extracted from privacy policies to reason about a
website’s data practices and conduct extensive privacy
policy analysis for multiple purposes. Translating pol-

1 Usable Privacy Policy Project: https://www.usableprivacy.org/
2See [40] for a more complete overview of the project.
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icy features into descriptive logic statements facilitates
detection of inconsistencies and contradictions in pri-
vacy policies [6]and annotation disagreement among
crowdworkers further helps identifying potential am-
biguities in the policy. Comparing a website’s privacy
policy with those from similar websites holds the po-
tential to detect likely omissions in the privacy policy.
Temporal monitoring of changes in privacy policies fa-
cilitates content-based trend analysis. Automated anal-
ysis of privacy policies and application code can fur-
ther help identify potential privacy compliance viola-
tions, for instance in the context of mobile apps [49].
We use policy analysis results to provide more effec-
tive and accurate privacy notices to users. In addition,
we plan to make analysis results available to website
operators in order to help them improve their privacy
policies.

Privacy Preference Modeling: The major goal of our
approach is to make privacy policies more usable and
accessible for website users. Thus, an important aspect
of our work is the identification of those key features in
privacy policies that are relevant to users. For this pur-
pose, we have been conducting numerous user stud-
ies on privacy concerns, perceptions, and preferences.
Furthermore, we strive to gain a deeper understanding
of cognitive biases that may negatively affect individ-
uals’ privacy decisions, in order to learn how users can
be made aware of privacy risks in an effective manner
[1].

Effective Privacy User Interfaces: Features ex-
tracted from privacy policies as well as results from
privacy policy analysis and privacy preference mod-
eling inform our design of user interfaces for privacy
notices. The goal is to make those policy features that
users care about more accessible, for instance, with
nutrition label-inspired privacy notices [26] or privacy
icons symbolizing data practices. We are also investi-
gating the potential of just-in-time notices that high-
light data practices when they become relevant for the
individual user. For instance, data practices concerning
the collection and sharing of contact or financial in-
formation may only be relevant when the user creates
an account or makes a purchase. We are in the process
of designing browser extensions that leverage policy
extraction results and offer notices to users indepen-
dently of website operators. We follow a user-centric
iterative design process to enhance and evaluate the
effectiveness of developed privacy interfaces in user
studies.

Finally, in contrast to related work described in the
next section, our outlined approach does not require
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Fig. 1. Overview of the the Usable Privacy Policy Project.

any effort or cooperation by website operators. By
making the content of privacy policies more salient and
accessible, we hope to also nudge companies towards
improving how they present their privacy practices.

3. Related Work

Privacy-enhancing technologies (PETs) can be de-
fined as the ensemble of technical solutions that pre-
serve the privacy of individuals in their interactions
with technological systems. In a recent overview,
Heurix et al. [20] categorize PETs along relevant di-
mensions of privacy, such as the types of data be-
ing processed or communicated, application scenarios,
grounding in security models, presence of a trusted
third party, etc. What their classification fails to ac-
count for, however, is the knowledge dimension in
PETs: without empowering users with the adequate re-
sources to better understand data collection, use and
sharing practices, their privacy awareness—the first
barrier against any kind of violation—is hindered.
In this regard, STs can be considered as knowledge-
enabling solutions for PETs, and as support tools for
developing context-aware applications [17,23,44,45].

According to Cuenca Grau [12], to be used as ef-
fective privacy-preserving systems STs need to em-
body the following functionalities: (F1) policy repre-
sentation, namely a declarative representation of poli-
cies in a system; (F2) models of interaction, i.e., a set
of queries that can extract relevant information from
the system; and (F3) policy violation, which formal-
izes the cases when user preferences and data practices
collide, leading to consequences that put users’ data at
risk. These interconnected functionalities can emerge
only when system development follows certain design
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stages, characterized by Cuenca Grau as: identifica-
tion of clear privacy requirements and translation into a
suitable formal language; realization of the formalized
requirements in a computational system; and analysis
and verification of the instantiated requirements [27].

PrivOnto, the semantic framework we propose,
strives to realize all three functionalities described
above, adhering to the related design stages. To the
best of our knowledge, most of the existing work on
leveraging STs as PETs focuses on defining formal
languages for privacy policy representation. For in-
stance, Duma et al. [13] and De Coi & Olmedilla [8]
have compared policy languages on the basis of the-
oretical (e.g., language expressiveness) and empirical
principles (action execution, extensibility, etc.). More
recently, Bartolini et al. [2] created a legal domain
ontology for data protection and privacy, and Breaux
et al. proposed ‘Eddy’ [6], a description logic de-
signed to model privacy requirements, comparing it
with alternative — yet less articulated — proposals like
KAo0S [46], ExXPDT [38] and Rein [24]. Eddy has been
used to detect conflicts in the specifications of privacy
policies, but not yet at large scale. Formalizing policies
in the context of description logics was also a goal of
the MyCampus and ‘PeopleFinder’ projects [17,39],
which used a semantic web environment in which poli-
cies are expressed using a rule extension of the OWL
language to capture privacy preferences such as con-
ditions under which users are willing to share their
location or other contextual attributes with different
services and other users. Other proposals for privacy
specification languages include P3P [9], XACML [29],
and EPAL [33], though these languages lack formal
semantics. A different perspective is taken by Gharib
et al. in [18], which presents a new meta-model of pri-
vacy ontology, based on a detailed review of the state
of the art in privacy requirements engineering.

Policy languages, meta-models and domain ontolo-
gies are necessary to implement (F1) and (F3), but are
not sufficient to realize (F2). Enabling (F2), namely
identifying suitable queries to extract privacy informa-
tion, is a data-intensive task. In the UPP project we ad-
dress this issue with an extensive data annotation ef-
fort conducted by domain experts. The centrality of
(F2) is recognized by Kagal et al. [24] when outlin-
ing Rein. Rein is a semantic web framework for repre-
senting and reasoning over policies in domains that use
different policy languages and knowledge expressed in
OWL and RDF-S. Rein realizes a basic version of (F2):
a rule-based inference engine checks for relations be-
tween a requester, a resource and some access prop-

erties. If a relation holds, the output will state whether
the request is either valid or invalid. Kagal et al. note
that to enhance the privacy and security of web appli-
cations more complex, yet user-friendly, query mecha-
nisms need to be implemented. In the next sections, we
articulate how this objective is being accomplished in
our work by outlining PrivOnto’s architecture and core
features. We illustrate how this semantic web frame-
work can be used to model relevant data practices de-
scribed in natural language privacy policies and aug-
ment context-awareness accordingly. We further dis-
cuss how PrivOnto can support privacy engineers and
regulators in policy analysis, and provide functionality
to also support user-oriented interfaces.

4. PrivOnto: Knowledge Base of Privacy Policies

The PrivOnto knowledge base is comprised of
913,544 RDF triples, obtained by populating a suitable
domain ontology with 23,000 annotated data practices
from a corpus of 115 privacy policies from US-based
companies [47]. PrivOnto merges a bottom-up and a
top-down approach for ontology creation [31,42]: the
former is illustrated in Section 4.1, where we describe
the main categories and attributes identified by do-
main experts to capture data practices expressed in pri-
vacy policies; the latter is presented in Section 4.2,
where we show how those conceptual structures are
formalized as a domain ontology, which has been sub-
sequently populated with a corpus of about 23,000 an-
notations of data practices. The corpus is described in
Section 4.3.

4.1. Domain Expert Frame Analysis of Privacy
Policies

In order to study which data practices are expressed
in privacy policies, and how data practices are de-
scribed in privacy policy text, some of the authors and
other members of the Usable Privacy Policy Project
conducted an iterative multi-disciplinary analysis of
privacy policies. The researchers involved in this activ-
ity were domain experts with backgrounds in privacy,
public policy and law.

4.1.1. Analysis approach

The researchers studied multiple privacy policies of
websites from US-based companies drawn from dif-
ferent categories (e.g., news, entertainment, govern-
ment, shopping) in a iterative qualitative content anal-
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ysis process. The analysis focused on US websites ex-
clusively. This ensured that the same legal baseline
applied to the privacy policy texts and that variations
in language would not be attributable to different na-
tional legal rules. For example, European law has spe-
cific obligations for data practices and notice disclo-
sures that are not found in US law. This means that EU
corporate policies would not be accurately compared
to US policies based solely on the text’s language.

The domain experts would initially read privacy
policies individually and mark the types of data prac-
tices described in each paragraph of the policy docu-
ment. Identified types of data practices were then dis-
cussed among the researchers and consolidated into
consistent codes corresponding to data practice cate-
gories. Additional privacy policies were analyzed un-
til no further data practice categories could be identi-
fied. This consolidation process was informed by the
existing privacy and data protection framework in the
United States, including the Federal Trade Commis-
sion’s Fair Information Practices [15]; the Platform for
Privacy Preferences (P3P) [9]; specific privacy notice
requirements prescribed by legislation, such as notice
requirements in CalOPPA [7], COPPA [14], and the
HIPAA Privacy Rule [32]; as well as prior research
on privacy policy analysis [4,10,11,22,35]. The com-
bination of content analysis grounded in privacy policy
text with the consideration of US privacy legislation
and literature ensured that resulting data practice cate-
gories are consistent with both (1) how data practices
are expressed in privacy policies and (2) the terminol-
ogy and notice requirements stipulated in US law and
literature.

For each of the identified data practice categories,
the experts further identified descriptive attributes that
collectively represent and define a data practice. For
example, a practice describing data collection by the
first party (i.e., the website) is defined by how and
where information is collected, the type of informa-
tion being collected and whether it is personally-
identifiable information, for what purpose the infor-
mation is collected, from what user groups infor-
mation is collected, whether the information is pro-
vided explicitly by a user or collected implicitly, and
whether users have any choice regarding the practice
(e.g., whether they can opt-out). The attributes used
to represent data practices, as well as common at-
tribute values were identified in a similar iterative pro-
cess as the categories, combing the qualitative analysis
of attribute and attribute value representations in pri-

vacy policy documents with legal requirements in the
United States.

This analysis process resulted in a collection of
frames that codify the different data practice cate-
gories, their descriptive attributes, and typical attribute
values as they are expressed in privacy policies. Each
frame has its own respective structure of frame-roles
and values [16]. These frames were refined over mul-
tiple iterations involving their application to additional
privacy policies and extensive discussions among the
domain experts.

4.1.2. Resulting collection of data practice frames
The resulting collection of frames represents ten cat-
egories of data practices, which are defined as follows:

First Party Collection/Use: Privacy practice describ-
ing data collection or data use by the service
provider operating the service, website or mobile
app a privacy policy applies to.

Third Party Sharing/Collection: Privacy practice de-
scribing data sharing with third parties or data
collection by third parties. A third party is a com-
pany or organization other than the first party ser-
vice provider operating the service, website or
mobile app.

User Choice/Control: A practice describing general
choices and control options available to users.

User Access, Edit, & Deletion: A practice describ-
ing if and how users may access, edit or delete the
data that the service provider has about them.

Data Retention: A practice specifying the period and
purposes for which collected user information is
retained.

Data Security: A practice describing how user data is
secured and protected, e.g., from confidentiality,
integrity, or availability breaches.

Policy Change: A practice on whether and how the
service provider informs users about changes to
the privacy policy, including any choices offered
to users.

Do Not Track: A practice specifying if and how Do
Not Track signals (DNT)? for on-line tracking
and advertising are honored.

International & Specific Audiences: A Practice that
pertains only to a specific group of users, e.g.,
children, California residents, or Europeans.

3https://www.w3.0rg/2011/tracking-protection/ (W3C Tracking
Protection Working Group)
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Other: Additional sub-labels for introductory or gen-
eral text in the privacy policy, contact informa-
tion, and practices not covered by other cate-
gories.

A data practice statement belongs to one of these
categories, and is characterized by a category-specific
set of attributes. The frames define a set of potential
values for each attribute. Each attribute is supported
by a text fragment in the privacy policy, which serves
as the natural language evidence for the annotated at-
tribute value.

For example, a First Party Collection/Use practice
is represented by four mandatory and five optional
attributes. The mandatory attributes are whether the
practice is a positive or negated statement (Does or
DoesNot), how the first party obtained information
(action-first-party), what kind of information is col-
lected (personal-information-type), and for what pur-
pose (purpose). In addition, a first party practice state-
ment may indicate whether information is collected
implicitly or if the user explicitly provides informa-
tion (collection-mode), whether collected information
is linkable to a user’s identity (identifiability), whether
the practice applies to registered users only (user-
type), and if a user choice is offered explicitly for this
practice (choice-type and choice-scope). Data prac-
tices in other categories are represented with similar
sets of attributes.

Mandatory and optional attributes reflect the level of
specificity with which a specific data practice is typi-
cally described in privacy policies. Optional attributes
are less common, while mandatory attributes are es-
sential to a data practice. However, the experts’ anal-
ysis of privacy policies found that descriptions of data
practices in privacy policies are often ambiguous on
many of these attributes [37]. Therefore, a valid value
for each attribute is Unspecified in order to express and
capture the absence of information. For instance, the
fragment “we disclose information to third parties only
in aggregate or de-identified form” exemplifies vague-
ness in data practices as it remains unspecified what
information might be disclosed or for what purposes.

This collection of data practice frames constitutes
the semantic foundation for the PrivOnto ontology, de-
scribed in the next section.

4.2. Domain Ontology for Privacy Policies

The PrivOnto ontology is a formal model of the data
practices identified by domain experts. It represents

unstructured policy contents according to frame-based
structures specified using OWL-DL. In PrivOnto, each
data practice category is modeled as a class character-
ized by a wide spectrum of Object and Datatype prop-
erties (see Figure 2): we used the latter to represent the
specific attributes of each category, which essentially
correspond to the backbone of the collection of frames
presented in the previous section; conversely, the for-
mer were used to represent the conceptualization of the
domain, and delineate the semantic relations holding
between the defined classes.

The Object property denote holds between the
class ANNOTATION and the class SEGMENT:
the resulting pattern captures the difference between
annotations, namely the entities that emerge from tag-
ging discrete parts of privacy policies with suitable
frames and roles, and the specific text they refer to.
Accordingly, individual annotations denote individ-
ual segments (policy paragraphs) and their constituent
parts or fragments. The class SEGM ENT and the
class FRAGMENT are linked by the part_of re-
lation, which is axiomatized as asymmetric and ir-
reflexive. This semantic structure reflects the com-
positionality of paragraph-length segments: fragments
can span from single words to well-formed sentences,
whereas segments correspond to syntactically and se-
mantically coherent sequences of fragments. By means
of the part_of relation, the same segment can in-
stantiate multiple data practices via its fragments.

Fragments are labeled with a unique identifier
(UID), consisting of the policy number, the segment
number, and the start and end indexes of the se-
lected text. In the same way, we assigned UIDs to
instances of practice categories. Thanks to this mod-
eling strategy, we can refer to different annotations
of the same fragment, so that the “raw” policy con-
tent is kept distinct from all the annotations that re-
fer to it. For example, a fragment stating that “by
use of our websites and games that have advertis-
ing, you signify your assent to SCEA’s privacy pol-
icy” is annotated as an instance of First Party Col-
lection and as an instance of User Choice, reflect-
ing different aspects of the policy text. This situation
can be represented in PrivOnto by two instances of
ANNOTATION, each exemplifying different data
practice categories, and referring to the same individ-
ual of FRAGMENT. The actual content of a frag-
ment is expressed in the form of ‘string’ values in the
range of the annotated_text datatype property,
whose domain is the FRAGM ENT class. For ex-
ample fragment 3819-3-95-203 is associated with
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Fig. 2. Protégé visualization of PrivOnto hierarchies of Classes, Object properties and Datatype Properties.

the following statement “The information we learn
from customers helps us personalize and continually
improve your Amazon experience." This fragment is
used in Figure 3, which shows how annotations, data
practice categories and fragments are connected in the
ontology. The PrivOnto framework does not directly
address the linguistic structures of a given policy, but
it pinpoints them only insofar as they instantiate a data
practice category: we demonstrate in Section 5 how
this is actually a key strength of our approach.

The ontology also includes ANNOTATOR, a
class whose instances denote the individuals involved
in the annotation task: the relation executed_by be-
tween ANNOTATION and ANNOTATOR pre-
serves the traceability of the identified data practices.

PrivOnto also includes general information about
the website where the privacy policy can be found: the
date when it was crawled, contact information of the
company to which the policy belongs, the company’s
website, the associated Alexa’s traffic ranking infor-
mation,* etc. Note that some of this ‘meta-information’
is subject to change, and thus needs to be regularly
monitored and documented: to this end, PrivOnto sup-

“http://www.alexa.com/topsites/countries/US

ports xsd:dateTime values, which serve as tem-
poral indexes for policies’ meta-information. Privacy
policies may vary over time as well: in this case it is
not only important to record changes, but also to in-
vestigate their implications: policies are systematically
updated by companies for a variety of reasons, and an-
alyzing the consequences of these modifications to en-
forced data practices is of key importance to regulators
and users. The privacy policies obtained for annotation
were collected at the same time, thus policy changes
do not occur in our dataset. Nevertheless, future ex-
pansion of our corpus will include the addition of new
privacy policies along with updates to already repre-
sented policies. We therefore plan to extend PrivOnto
with OWL-Time> to enable qualitative and quantita-
tive temporal reasoning [21].

4.3. Corpus of Annotated Privacy Policies

PrivOnto was instantiated based on the OPP-115
corpus [47], a corpus of 115 privacy policies of US-
based companies, each independently annotated by
three legal experts according to the developed collec-

Shttps://www.w3.0rg/2001/sw/BestPractices/OEP/Time-
Ontology-20060518
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tion of data practice frames. In this section, we charac-
terize the OPP-115 corpus and the annotation process.

Privacy policies vary along many dimensions of
analysis, including length, legal sophistication, read-
ability, coverage of services, and update frequency.
Large companies’ policies may cover multiple apps,
services, websites, and retail outlets, while privacy
policies of smaller companies may have narrower
scope. Accordingly, privacy policies were chosen for
inclusion in the UPP corpus using a procedure that en-
couraged diversity.

Websites were selected using a two-stage pro-
cess: (1) relevance-based website pre-selection and (2)
sector-based subsampling. This first stage consisted of
monitoring Google Trends [19] for one month (May
2015) to collect the top five search queries for each
trend; then, for each query, the first five websites were
retrieved on each of the first ten pages of search results.
This produced a selection of 1,799 unique websites.
For the second stage, websites were chosen from each
of DMOZ.org’s top-level website sectors (e.g., News,
Shopping, Arts).® Note that the DMOZ.org’s “World”
sector was excluded and that the “Regional” sector was
limited to the “U.S.” subsector in order to exclude non-
US privacy policies and to insure that all policies were
subject to the same legal baseline.

6The DMOZ.org website sectors are notable for their use by
Alexa.com.

For each sector, eight websites were selected based
on occurrence frequency in Google search results.
More specifically, the eight websites were randomly
selected two-apiece from each rank quartile. Each
selected website was manually verified to have an
English-language privacy policy and to belong to a
US company (according to contact information and
the website’s WHOIS entry). Websites that did not
meet these requirements were replaced with random
redraws from the same sector and rank quartile. No-
tably, some privacy policies covered more than one se-
lected website (e.g., the Disney privacy policy covered
disney.go.com and espn.go.com). The consolidation of
the corpus resulted in a final dataset of 115 privacy
policies of US-based companies across 15 sectors.

We developed a web-based annotation tool, shown
in Figure 4, to facilitate annotation of the UPP corpus’
privacy policies by expert annotators according to our
frame-based annotation scheme. Privacy policies were
divided into segments and shown to annotators sequen-
tially in the tool. Each segment may be annotated with
zero or more data practices from each category. To an-
notate a segment with a data practice, an annotator as-
signs a practice category and specifies values and re-
spective text spans (fragments) as appropriate for each
of its attributes.

Each privacy policy was independently annotated
by three expert annotators. In total, we hired 10 law
students as experts on an hourly basis to annotate the
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complete set of 115 privacy policies. Note that the av-
erage annotation time per policy was 72 minutes. The
annotation of the corpus resulted in about 23,000 an-
notations of data practices, which were used to popu-
late the PrivOnto ontology and create the correspond-
ing knowledge base.

5. Query-based Semantic Analysis of Privacy
Policies

PrivOnto facilitates the elicitation of prominent in-
formation from privacy policies in order to gain in-
sights on the nature of data practices. This knowledge
elicitation process leverages a library of 57 SPARQL
queries’ we engineered to retrieve data practice cate-
gories, attributes, and values from the annotated cor-
pus.® Our work required only marginal effort for trans-
lating unstructured natural language questions into for-
mal queries, as our frame-based annotation process
embedded ‘saliency’ in the corpus of annotations in
the form of ontology categories and attributes. For this
reason, the ontology-based analysis of privacy policies
proposed in this article did not require dealing with the
diversity and ambiguity of natural language text [25].
The queries we present in Section 5.2 match by de-
sign the privacy questions that domain experts deemed
as relevant for policy analysis, and that originated the
PrivOnto framework in the first place.

5.1. Architecture

Our architecture for mapping the structured annota-
tion corpus to the PrivOnto ontology is shown in Fig-
ure 5. The mapping process resulted in a .owl file that
captures the corpus (913,544 RDF triples). The ob-
tained knowledge base was then loaded in an Apache
Jena Fuseki server® for dynamic processing: the server
provides a web service framework for different appli-
cations to access data through SPARQL queries. Fig-
ure 6 shows the PrivOnto semantic web environment.
This API was further used by Usable Privacy Policy
website to create a semantic search tool for querying
privacy policies.

7Version 1.1: https://www.w3.org/TR/2013/REC-sparql11-query-
20130321/

8Despite being extensive and detailed, this library is not meant to
be exhaustive, and can be further expanded.

9https://jena.apache.org/download/index.cgi

5.2. Library of Queries

We created 57 SPARQL queries to analyze different
aspects of the 115 privacy policies represented in the
PrivOnto ontology: this method enabled us to build a
scalable semantic retrieval system for gaining insights
on privacy practices related to the collection, use, and
sharing of personal data. The queries in the library can
be categorized by two orthogonal dimensions, based
on: (1) the type of targeted information (quantitative,
qualitative, truth-values) and (2) the selected practice
category.

It is important to point out that all 57 queries return
the annotated text associated with a policy fragment:
this feature realizes a crucial aspect of model of inter-
action (see functionality F2 in Section 3), i.e., the pos-
sibility for legal experts and users to understand and
evaluate the machine-readable semantic models and
queries in relation to a privacy policy’s original text.

Table 1 shows the different kinds of information that
can be extracted from the knowledge base, along with
sample queries. Percentage and count type questions
help gain an overall understanding of the privacy pol-
icy data.

For example the query below, which calculates the
‘number of policies that allow users to export their
data, returns 1 as the answer. Thus, only one out of
115 policies in our data set provides for the export of
collected data, which shows the exceptionality of this
data practice in the considered dataset.

SELECT (COUNT (%) AS ?count) {SELECT DISTINCT Z?policy

WHERE {?p a privonto:UserAccess.
privonto:access_type "Export"""xsd:string.
privonto:related_to ?policy.}

In order to verify facts in the ontology, we can use
ASK queries. For instance, the query below, which
matches the question ‘Does any policy state that per-
sonal information is shared or collected as part of a
merger?, returns True as output. By replacing the
ASK clause with a SELECT clause, we can easily as-
sess that nine policies include that data practice.

ASK
WHERE
{?frag privonto:part_of ?segment.
?frag privonto:has_information_type Z?practice.
?prc privonto:purpose "Merger/Acq"""xsd:string.
?prc privonto:related_to ?policy.
?prc a privonto:FirstPartyCollection.}

Our SPARQL queries also help gain specific in-
formation about different practice categories. For in-
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SPARQL ENDPOINT
http://localhost:3030/inf/sparq| JSON

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

SELECT DISTINCT *

QUERY RESULTS

CONTENT TYPE (SELECT)

PREFIX privonto2: <http://www.usableprivacy.org/v3/privonto.owl#>

WHERE {
?fragment privonto2:has_information_type ?practice.
?practice  privonto2:personal_information_type "Location"“xsd:string.
?fragment privonto2:annotated text ?text.
?practice a privonto2:FirstPartyCollection
}
LIMIT 2

CONTENT TYPE (GRAPH)

4| Turtle B

KA
'3

2 privonto2:3711-12-2-246

21 Raw Response * Search: Show ( 1000 4) entries
fragment § ' practice S itext $
1 privonto2:3714-2-219-228 privonto2:FirstPartyCollection_3714-2-219-228 "zip code,"

privonto2:FirstPartyCollection_3711-12-2-246

" Location Information. We may, and may enable our
advertisers to, collect your location via certain services
we provide through digital applications, wireless access
protocol services ("WAP Services")or mobile phone
service ("Mobile Services")."

Showing 1 to 2 of 2 entries

Fig. 6. Screenshot of the Apache Jena Fuseki server used for querying PrivOnto: the query in the example returns two policy fragments about
collection of location information. Note that the LIMIT 2 clause was used to fit the results to the window’s size.

stance, the query exemplified by the question ‘How
many websites mention each audience type?’ lead us
to discover that clauses are generally added for chil-
dren (86 out of 115 privacy policies), which suggests
that a large number of privacy policies aim to be com-
pliant with the Children Online Privacy Protection Act
(COPPA) [14], but also shows that 25% of the privacy
polices in our corpus have no provisions specific to
children.

The second dimension through which our SPARQL
queries can be classified is based on different practice
categories. Each practice category provides very spe-
cific information about privacy policies. By organizing
the queries in this way, we can concentrate on specific
characteristics of a policy, and draw parallel conclu-
sions from different categories. Table 2 shows example
queries from each category.

While running experiments in the Jena Fuseki en-
vironment, we observed that the queries’ processing
time depends on the complexity of the SPARQL ex-

pression, while being only partially correlated with the
number of matches. In particular, Figure 7 represents
the proportion between number of matches and re-
trieval times for a subset of 20 SPARQL queries cho-
sen across all data practice categories to highlight rele-
vant types of information in a policy. For instance, the
figure shows that only four queries had processing time
higher than 1500 ms: these queries included SPARQL
constraints like OPTIONAL and MINUS. The queries
labeled as ‘Financial Information and Purpose’, ‘Gen-
eral Information and Purpose’, ‘Unspecified Informa-
tion and Purpose’ refer to user’s collected information
at different levels of granularity, and specify the pur-
pose of collection only when found in a policy: this
condition was expressed in the SPARQL request by an
OPTIONAL clause on the ‘Purpose’ attribute of the
‘First Party Collection/Use’ category. In the case of
the query labeled as ‘Policies with User Choice,’ the
high processing time was brought about by the MINUS
clause, introduced to discard from the results all the
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Table 1

Targeted information and related query types.

Targeted Information Query example

Percentage

What percentage of policies apply to websites and mobile apps?

Count on Practices

How many practice statements per policy are unclear about where
information are collected from users?

True or False

Is information shared or collected as part of a merger or acquisition?

Count on Policy

How many policies have statements on user choice?

Count on Supporting text in
each Policy

tion them?

For each of the security-measure values, how many websites men-

Table 2

Queries are sent to the Apache Jena Fuseki server that runs the PrivOnto framework: quantitative results shown in the table indicate the number
of fragments, number of policies, and percentages related to specific data practices.

Category Type of Queries Result
First Party Collection | Fragments that collect finance information and for what purpose? 231
Third Party Sharing | Fragments that denote user information is shared with external third parties | 2,220
User Choice How many policies have statements on user choice? 106
User Access Percentage of policies that allow users to delete their account 0.18
Data Retention Percentage of statements where a period is stated for data retention 0.09
Data Security For each of the security-measure values, how many websites mention them? 10
Policy Change How many websites specify a user choice on policy change? 91

policies with no real user choice, but only with take-
it-or-leave-it option (this aspect is further analyzed in
section 5.3.3).

5.3. Results

In this section we provide an overview of the quan-
titative and qualitative results of our query-based se-
mantic analysis of about 23,000 data practices instan-
tiated in the PrivOnto knowledge base.

5.3.1. Personal information collection/sharing

For the practice categories User Choice, First Party
Collection/Use, and Third Party Sharing/Collection,
we observed that privacy policies specify the infor-
mation collected or shared, though the purpose of
data collection is rarely mentioned in the same frag-
ment. Therefore, we collected the purpose informa-
tion from the other fragments present in the parent
segment. We observed that, apart from ‘unspecified,’
‘basic service’ and ‘additional service’ were the most
mentioned purposes. ‘Device information’ and user’s
‘online activity’ are collected from users’ for ‘analyt-
ics/research’ purposes, whereas ‘finance’ and ‘contact
information” were collected for ‘marketing’ and ‘ad-

vertising purposes.” Purpose for which information is
highly shared is ‘Advertising’ (14.6%), and the pur-
pose for which information is highly collected is for
‘basic service/feature’ (16%).

Table 3 presents the comparison of different per-
sonal data types which are collected and shared. We
observed that most of the data types collected and
shared are unspecified (last row). This result can be
explained by the fact that the word “information” is
often used with no further description or specification
in the policies. As a result, the privacy policies make
it difficult for consumers and regulators to determine
which information is actually collected or shared by
a company. The following text fragments exemplify
this vagueness: “the information we learn from cus-
tomers helps us personalize and continually improve
your Amazon experience” and “any information that
we collect from or about you.”

Table 3 also shows that ‘device,” ‘location identi-
fiers,” and ‘contact information’ are often collected by
the websites, but are not explicitly mentioned in state-
ments with respect to third party sharing. Because of
the extensive use of generic descriptions for informa-
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Fig. 7. Proportion between number of matches and processing times for a subset of 20 queries. The labels in the x-axis represent types of
information collected, shared, or mentioned in a policy and returned by suitable SPARQL queries. The y-axis represents the corresponding

number of matches (blue histograms) and the retrieval time in milliseconds (red histograms).

tion types, the privacy policies do not indicate whether
these data items are actually shared with third parties.

‘Contact information,” ‘user online activities,” and
‘general personal information’ are the top referenced
types of information. ‘Contact information’ appears
frequently as collected information, while ‘general
personal information’ is highly shared. ‘General per-
sonal information’ is also often ambiguous. The cor-
responding policy fragments describe this information
as “personally identifiable information” or “personal
information.” For example, one policy in the corpus
shares “any and all personal identifiable information
collected from our customers” with third parties.

Out of 115 policies, 90 privacy policies state that the
service providers do not share some information with
third parties, and 78 policies explicitly state what in-
formation they do not collect from users. The top cat-
egories of information type reportedly not collected or
not shared are ‘generic personal information,” ‘cook-
ies and tracking elements,” and ‘contact’ information.
While this appears to contradict the previous find-
ing that contact information is frequently collected
and general personal information is widely shared, the

contradiction reflects that privacy policies are explicit
when they do not share data.

5.3.2. Marketing and Advertising

There were 886 fragments which described the col-
lection of information for ‘Marketing’ and ‘Advertis-
ing’ purposes. Information collected for advertising
purposes is typically identified as the user’s ‘online
activities’ or ‘cookies and tracking elements’. Users’
‘contact’ information is typically used for ‘marketing’
purposes.” By contrast, ‘financial’ information is often
identified for sharing with third parties when these are
partners or affiliates.

5.3.3. User’s choice on enabling service

Almost all privacy policies (92%) have statements
describing User Choices. But, of these privacy poli-
cies, 48% have statements that merely describe a take-
it-or-leave-it choice. Instead of a real choice, users are
told not to use the service or feature if they disagree
with the privacy policy or with certain data practices.
Examples are: “if you choose to decline cookies, you
may not be able to fully experience the interactive fea-
tures of this or other Web sites you visit” or “if you do
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Table 3
Queries on information collected from users or shared about users. Number of fragments are visualized, as well as coverage across policies,
Question First Party | % Policies Third Party | % Policies
Collection Collection
Fragments that collect/share location information and | 265 59.13 61 26.09
for what purpose?
Fragments that collect/share contact information and | 736 90.43 246 57.39
for what purpose?
Fragments that collect/share device identifier and for | 319 76.52 75 25.22
what purpose?
What kind of Fragments are especially negated 199 67.83 313 78.26
Fragments that collect/share finance info and for what | 231 63.48 102 35.65
purpose?
Fragments that collect/share user’s online activities | 559 87.83 294 66.96
info and for what purpose?
Fragments that collect/share user’s general personal | 587 88.70 730 91.30
information info and for what purpose?
Fragments that collect/share user’s unspecified info | 936 85.22 820 88.70
and for what purpose?

not agree to this privacy policy, you should not use or
access any of our sites.”

5.3.4. User Data Retention

About half of the privacy policies (56%) specify for
how long they store user data. In 40% of these policies
a retention period is explicitly ‘stated’ (e.g., 30 days)
or the retention period is at least ‘limited’ (e.g., stored
as long as needed to perform a requested service);
while 7% express that the data will be stored indefi-
nitely. The distinction between ‘Limited’ and ‘Stated’
retention periods is sometimes blurred due to drafting
vagueness and annotator interpretation. For instance,
the fragment “we will retain your data for as long as
you use the online services and for a reasonable time
thereafter” has been annotated both as “limited period”
or as “stated period.” This creates ambiguity with re-
spect to the duration that user data will remain in a ser-
vice’s database.

5.3.5. Data Export

As mentioned in the previous section, only one pol-
icy in our knowledge base describes how users can
export data. The respective annotated fragment states:
“California Civil Code Section 1798.83, also known
as the Shine The Light law, permits our users who are
California residents to request and obtain from us once
a year, free of charge, information about the personal
information (if any) we disclosed to third parties for

direct marketing purposes in the preceding calendar
year.”

5.3.6. Policy Change

Privacy policies typically provide that users are noti-
fied about changes to the privacy policy through some
form of general notice or through a website. Only
30% of the privacy policies containing descriptions of
change in notification practices mention a notification
of individual users (e.g., via email). The lack of per-
sonal notice for policy changes means that users are
unlikely to be aware of changes to the privacy pol-
icy, although such changes may alter how information
about them is collected, used, or shared by a service.

5.3.7. Data Security

The major security measures which most websites
describe are the use of ‘secure user authentication,” the
existence of a ‘privacy/security program,” and the com-
munication of data with ‘secure data transfer.’

The analysis above shows that query-based analysis
of the PrivOnto knowledge base can provide insights
on privacy policy data both on a semantic and tex-
tual level. We can both verify information and collect
statistics on privacy policies by means of the PrivOnto
semantic framework. Ontology-driven analysis can
help distill the content of a privacy policy, as well as
help compare the target policy with similar policies. In
this respect, PrivOnto can help users gain insights on



Oltramari et al. / PrivOnto: A Semantic Framework for the Analysis of Privacy Policies 15

the stated practices of services they use and help them
make more informed privacy choices.

6. Semantic Search

In the previous section, we analyzed the knowledge
base created using PrivOnto ontology. While SPARQL
is a very useful framework to acquire information from
a OWL ontology, it is not easy for a layman to work
with. SPARQL expertise is crucial in extracting the
correct information from a knowledge base. In order
to make our work user friendly, we decided to create a
semantic search functionality where natural language
queries will be converted to SPARQL queries for easy
access. The UPP portal already visually integrates the
data practice annotations with a privacy policy’s origi-
nal text in an easy-to-use web interface (see Figure 11),
and enables users to filter for attributes and values of
specific frame categories, although currently in a lim-
ited manner without the support of semantic technolo-
gies.

We have extended this functionality as a part of our
UPP project’s data exploration portal.' As shown in
Figure 5, natural language queries were mapped to
SPARQL queries at the application server end. Using
the web API created by Jena, answers to the queries
were retrieved from the semantic server. Depending
on the type of the queries, qualitative answers where
shown as a paginated table and quantitative queries
where shown as a interactive bar chart. Figure 8 shows
the result for both the type of queries. Currently, the
initial version of this search functionality is under beta
testing phase in our development server.

In the initial version of the semantic search, we are
presenting the users with the natural language queries.
They can filter these queries based on the practice cat-
egories and question type as discussed in the previous
section. For quantitative queries which extracts part of
text from a website policies, we provide link to the
paragraph of the policy the text comes using a link in
website name column. Users can use this link to get
more clarity on the results. Figure 9 shows an exam-
ple of this functionality. For users who are interested
in knowing the actual SPARQL query behind the re-
sults, a small button is added (see Figure 9), to show
the underlying SPARQL query.

10https://explore.usableprivacy.org/

7. Discussion and Future work

In this paper we described PrivOnto, a semantic
web framework used to represent data practices in
privacy policies and support knowledge elicitation.
PrivOnto is an essential tool for regulators and can
also enable more usable privacy notices by exposing
semantic reasoning results to users. We show the util-
ity of PrivOnto by instantiating it with a corpus of 115
privacy policies of US-based companies which have
been annotated by domain experts as part of the Usable
Privacy Policy project.

The PrivOnto ontology model formalizes a frame-
based annotation scheme that helps experts identify
data practices in policy text. As a result, each relevant
fragment of a policy has been mapped to suitable on-
tology categories and attributes, generating a knowl-
edge base of about 23,000 annotated data practices.
Each fragment may be associated with different cat-
egories and attributes, on the basis of interpretations
by multiple annotators. In this regard, consolidating al-
ternative and potentially conflicting interpretations is
a relevant challenge for our work, which we are cur-
rently addressing using natural language processing
and machine learning techniques.

To the extent that contradictions have a logical na-
ture, state-of-the-art inference engines like Pellet [43]
would be sufficient to flag them. For instance, pre-
liminary results show that there’s complete agreement
when it comes to annotate if a Do Not Track data prac-
tice is ‘honored’ or ‘not honored’ by a given policy:
but in cases when those two mutually exclusive val-
ues were to be selected for the same fragment, auto-
matic reasoning with PrivOnto would detect the incon-
sistency.

PrivOnto’s semantic representation and current
knowledge base is grounded in data practice annota-
tions of US companies’ privacy policies and framed by
US privacy law and standards. The described annota-
tion and modeling process can be replicated to derive
knowledge representations for privacy policy content
subject to other legal and regulatory frameworks, e.g.
in Europe or the Asian-Pacific region. Ontologies asso-
ciated with other legal or regulatory frameworks could
be developed to facilitate compliance analysis across
privacy and data protection requirements in different
regions and contexts.

Semantically-labeled privacy policies constitute an
important resource for privacy analysts and regulators,
but scaling the process of annotating natural language
privacy policies accordingly can be challenging. As
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Fig. 9. A screenshot of the search functionality in UPP website.

part of the efforts in the UPP project, we investigate
the potential of crowdsourcing privacy policy analysis
from non-experts, in combination with machine learn-
ing, in order to enable semi- or fully automated extrac-
tion of data practices and their attributes from privacy
policy documents [3,5,48]. These efforts show promise
for scaling up our analysis, which would enable further
expansion of PrivOnto’s knowledge base.

PrivOnto shows how STs can be used to provide
privacy researchers, regulators, site operators and end

users with practical reasoning functionality that can
help them deal with the complexity of privacy poli-
cies. This includes using inferences to highlight impor-
tant ramifications of privacy policy statements. These
inferences can help end users see how some policy
statements (or lack thereof) align with their actual con-
cerns (e.g. "could this site possibly share my location
with third parties?", "for how long does this site keep
my location data?"). They can help site operators iden-
tify inconsistencies in their policies (e.g. a site stat-
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Semantic Query

View queries involving  First Party Collection s

Count of Supporting Text In Each Policy (1) 1

P pREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX x8d: <http://www.w3.org/2001/XMLSchema#>

P pREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX privo: <http://www.usableprivacy.org/v3/privonto.owl#>

M select ?purpose (count(DISTINCT ?policy) as Zcount)

WHERE {

§ ?outerfragment privo:part_of ?segment.
?outerfragment privo:has_information_type ?outerpractice.
?outerpractice  privo:purpose ?purpose .
?outerpractice a privo:FirstPartyCollection .
?outerpractice privo:related_to ?policy .
{Select DISTINCT ?segment{

?fragment privo:part_of ?segment.

?fragment privo:has_information_type ?practice.
?practice privo:related_to ?policy.
?practice a privo:FirstPartyCollection .

}

}GROUP BY ?purpose

practices:

Purpose

Fig. 10. SPARQL version of a query in the search page

ing that it does not share Personally Identifiable In-
formation (PII), yet indicates that it shares email ad-
dresses with third party affiliates). They can help reg-
ulators identify potential compliance violations. They
could ultimately also support more sophisticated inter-
faces that empower users to identify alternative sites or
apps similar to the ones they are currently considering
but without privacy practices with which they may not
feel comfortable. The search functionality presented in
this paper revolves around an initial set of 57 SPARQL
queries derived from conversations with privacy schol-
ars, including both legal scholars and experts in mod-
eling people’s privacy concerns, given our objective
of supporting reasoning functionality capable of sup-
porting a broad range of usage scenarios. Over time
we envision further refining this set of queries, as
we continue to collect feedback from different target
user communities (end-users, site operators and reg-
ulators). We also envision creating extensions of the
framework presented herein, where annotations col-
lected from multiple annotators are combined and as-
signed confidence levels that reflect the level of agree-
ment among annotators. These confidence levels could
in turn be combined according to some logic when as-
signing confidence levels to facts inferred from con-
solidated annotations — a number of different possible
frameworks are available here.
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